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A method of calculating the nonstationary temperature field of a composite hollow 
cylinder when its external surface is heated asymmetrically is described. 

Composite cylinders are widely used in the construction of various thermal devices. In 
the majority of papers on heat transfer the nonstationary temperature field of a composite 
hollow cylinder is calculated assuming symmetrical boundary conditions. In practice, the 
boundary conditions are often not symmetrical. This considerably complicates the boundary- 
value problem of heat conduction and makes it difficult to obtain a solution using accurate 
analytical methods. 

In the present paper the nonstationary temperature field of a composite (three-layer) 
hollow cylinder when its external surface is heated asymmetrically is determined using a 
finite-difference method. 

Consider an element in the form of a composite hollow cylinder of infinite length (--~ < 
z < ~) of internal radius R~ and external radius R4. The materials of the layers D k (k = i, 
2, 3) of the cylinder are different and are characterized by the following thermal and geo- 
metrical parameters: %k, Ck, Ok, and 6s(Rs-1, R s) (s = 2, 3, 4). The initial temperatures 
of all the layers are the same, constant, and equal to To. At the initial instant of time 
t = 0 the internal surface mnpq of the cylinder and also the parts AB and CD of its external 
surface are heated at a temperature Tc, which remains constant during the heating. The parts 
BC and DEA of the external side surface of the cylinder are thermally insulated. There is 
tight thermal contact between the layers of the cylinders which remains unchanged during the 
heat transfer. We are required to determine the following: 

I) the nonstationary temperature field of the transverse cross section of the composite 
cylinder; 

2) the time taken to heat the zone R2 < r < Ra, 0~<~2~ of the cylinder to a given 
temperature T*; 

3) the dependence of the temperature on time at characteristic points of the transverse 
cross section of the cylinder. 

The system of differential equations describing the nonstationary temperature distribu, 
bution in the three-layer cylinder has the form 

OTk - -  ~ k  ( 02T~ 1 OTk 1 O~Tk ) 
CkPk at \ Or ~ + - ' -  + -  ' r Or r ~ O~ 2 

R s _ ~ < r < R ~ ,  O ~ . ~ 2 n ,  1 > 0 ,  (1) 

T~(R~, ~, t)-- T c, O~.~-~2n, t>O, (2) 
5 , ~ ~ q ~ < z ~ ,  t > O ,  (3 )  Ts(R4, ~, t )=Tc ,  O~q~< 3 6 

OTs(R4, ~, t) : 0 ,  ~ 5 . Or ~-  ~q~< ~ -a ,  a<->q~.~<2n, t>O, (4) 
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Fig. i. Transverse cross section 
of the composite hollow cylinder. 

T~(R.z, ~, t)-.-:.-T~ (R.,_, % t), ~.~ OT, (R~, ~, t) OT~(R,, % t) 
- - L  , o ~ q ~ 2 ~ ,  ~ > o ,  (5) 

Or Or 

T2(R~, ~, l ) =  T~(R~, % l), 
~OT2(R3,  % t) ~ OT3(R 3, ~, t) - t .  3 , 0 ~ q o ~ 2 n ,  t > 0 ,  (6) 

Or Or 

T(r ,  ~, 0 ) = T o = c o n s t ,  R ~ _ ~ : ~ r ~ R ~ ,  0 ~ q ~ 2 a ,  t = 0 .  (7) 

We will use a finite-difference method to solve the boundary-value problem (1)-(7.) nu- 
merically. We introduce the space-- time net 

and we put 

D~.~.t = {ri : Rt + iAr, ~j : ]Aq~, t,, =- nT} 

( i :  1, 2 . . . . .  M,  ] : 1 ,  2 . . . . .  N,  n = O ,  1, 2 . . . .  ), 

Ar = ( R 4 - -  R1)/M, A~ : 2n/N 

T (r~, q~j, t,~)= T~, i. 

Replacing the derivatives with respect to the coordinates and time from Eqs~ (1)-(7) by 
the corresponding difference relations, we obtain the finite-difference analog of these dif- 
ferential equations in the form [i] 

Tn+ 1 T'~ �9 
i , i  - -  ,,1 -~- 

c 

rl t7 l + (Ti- ,d --  Ti+,.l") 
2qAr  

Ti -1  . i -  ,.1 ~- Ti--,.i) + 
�9 Ar"- 

' ]  - -  + t'T~i,i+: - -  2T~,/ -? T~,i+1 ) --r~ aq  ' (8) 

(9) 

(J_o) 

(11) 

T 1 (R1, q~j, tn) = To, 1 -~ ] ~ N ,  

7"3 (R,, ,~j, t.) = T~, M3 -< j ~ M., M5 ~< j < M~,, 

T3(rM--I, r t , O = T 3 ( r M ,  ~j, t . ) ,  M4~<.I < M 5, M 6 ~ I < M  3. 

Here M3, M4, Ms, and Mn are the values of the index j corresponding to the coordinates of the 
points of separation of the boundary circles of the cross section of the ~cylinder (Fig. la). 

The temperature at the boundary of separation of the cylindrical layer is given by the 
relations [2] (Fig. 2a) 

Tn+, ~ 2~ [ ~A~., (T~- T~,~+I) ~+i __ T%+,)] 
m.m+l = T,~.m+t + PmcmArra 4-- P.,+,cm+lArm+l - .~ Arm+l ( T~m'm+l ~ �9 (12) 

In Eq. (12) the indices i and j are omitted, while the index m, which takes the values 
1 and 2, indicates the boundary of separation between layers 1--2 and 2--3, respectively. 

Relations (12) follow from the condition that the changes in the amount of heat in the 
layers adjacent to the boundaries of separation 
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Fig.  2. Scheme f o r  c a l c u l a t i n g  the  t empera tu re  
f i e l d  us ing  Eq. (8) (a) and fo r  d e r i v i n g  Eq. (12) 
(b ) .  

[ n n ~'m+l (T;~.m+l- T~,+l) ]T s (T,n--Tm,m+O + Arm+i AQm,m+l = L Ar,, (13) 

are equivalent to changes in their heat content, due to changes in the boundary temperatures 
from T~ to T~*:-' 

AQm,m+, = Proem ~ + Pm+lC,,+I ~',,z.m+l-- T .... ,+0. (14) 

The i n i t i a l  v a l u e s  of  the  t e m p e r a t u r e s  a t  a l l  p o i n t s  o f  the  ne t  a re  given by the  equa-  
t ions 

Tk(r i, ~ ,  0 ) =  To, i = 1, 2, . . .  , M, ] = 1, 2 . . . . .  N. (15) 

An a lgo r i t hm f o r  the  compu ta t i ona l  p r o c e s s  was deve loped  us ing  an e x p l i c i t  d i f f e r e n c e  
scheme represented by the recurrent relation .(8). The convergence and stability of the com- 
putational process based on relation (8) is ensured by a matched choice of the steps of the 
space--time net: with the chosen steps Ar and A@ the integration step with respect to time 
is chosen from the conditions [2] 

[ ( )j 0.~< l--2az ~ + r~A- ~<1, (16) 

2 v (  xm ~m+x ) 
0~.[I-- -~r'm ~ A-rm+l ] ~< l. (17) 

P~c~hrm + P~+lcm+lAr~+l 

Equa t ion  (8) enab le s  one to de t e rmine  the  v a l u e  of  the  r e q u i r e d  t empera tu re  f u n c t i o n  T (r ,  ~,  
t )  a t  any i n t e r n a l  p o i n t  ( r . ,  ~ . )  on the  c r o s s  s e c t i o n  of  the  t h r e e - l a y e r  c y l i n d e r  a t  an a r -  x 3 
b t t r a r y  i n s t a n t  of  t ime t = tn+,  from the  known v a l u e s  of  the  t empera tu re  a t  p o i n t s  o f  the  
theoretical "five-polnt" (Fig. 2b) 

(Q_p q~i), (r$, q~i), (Q+I, ~S)(ri, r n (r i, qoj+~) 

at the instant t = t n. The computational process carried out using an ALGOL program con- 
sists in successively filling (along the rows) the matrix of values of the temperatures Tj ,i 
at each time layer t = t n. At the initial instant of time t = 0 all the elements of the 
matrix Tj,i are assumed to be equal to To; the column Tj,, remains unchanged for any t, while 
the column Tj,M consists of four parts, each of which corresponds to either a heating zone 
or a zone of thermal insulation on the external surface of the cylinder.. :When each row of 
the matrix T n-. ~ is filled three zones are distinguished (using logic criteria) corresponding 
to the threeJiayers of the cross section of the cylinder. The elements of the rows of the 
matrix Tj, i at internal points of each zone are calculated using Eq. (8) :taking conditions 
(9)-(13) and (15) into account. The elements of the rows of the matrix Tj ,i corresponding 
to values of the temperature at the boundaries of separation of the layers are calculated 
using Eqs. (12). The calculations are stopped when the middle layer of the cross section of 
the cylinder is heated to the assigned temperature. 
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Fig. 3. Pattern of isotherms of the temperature field of 
the composite cylinder (a) and graphs of T = T(t) at char- 
acteristic points of the cross section of the cylinder (b). 
T, degrees; t, see. 

The nonstationary temperature field of the composite cylinder was calculated on the M- 
222 computer using the following numerical values of the constructional and thermal parame- 
ters: 

R 1 = 0.02 m; R2 ~ 0.12 m; Ra = 0.15 m; ~4 : 0.2 m; 

= ~ = 36.8 k c a l / m . h  �9 ~ ~ : 0.67 k c a l / m . h  . ~ 

Pl = P~ = 7682 kg/m3; ~ ~ 985 ~ / m3 ;  T O ~ 20 ~ 

C~ = C 3 = 955.2 kcal/kg .~ C 2 ~ 481 kcal/kg.  ~ 

T c = 3 0 0 ~  T * = 1 4 0 ~  M = 4 5 ; N = 6 2 ;  ~ = 0 . 5 5 5 . 1 0  -4h.  

F i g u r e  3a ,  b shows t h e  p a t t e r n  o f  i s o t h e r m s  o f  t h e  t e m p e r a t u r e  f i e l d  a t  t h e  i n s t a n t  t = 
0 . 7 5 r  and  g r a p h s  o f  T = T ( t )  a t  c h a r a c t e r i s t i c  p o i n t s  o f  t h e  t r a n s v e r s e  c r o s s  s e c t i o n  o f  t h e  
c y l i n d e r .  The t i m e  t a k e n  t o  h e a t  t h e  m i d d l e  c y l i n d r i c a l  l a y e r  t o  a t e m p e r a t u r e  T* = 140~ 
is 3.8 h. 
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